B.Sc. Chemistry Honours

6 Semester Course

List of Courses

SI No	Name of the Course	Semester	Course Code	Credit	Marks in the Course	Name of the Programme	Programme Code	Course outcome		Introdcutio n year of new course	BoS Date	Percentage of Revision	BoS Date
1	Organic chemistry- I, Physical Chemistry-I, Inorganic Chemistry-I (theory)	1	CEMA-P1- T	10	75	B.Sc. Chemistry Hons	CEMA	 gas behaviour including the distribution of velocities Ideal gas model, real gas model – success and limitations deal gas model, real gas model – success and limitations Foundation of thermodynamics and different processes and transformation of energies Concept of shape of different orbital and term symbols; Concept of shape of different orbital and term symbols Estimate standard reaction enthalpy by various means Concept of IP, EA and various scale of electro negativity Concept of physical properties (dipole moment, mp/bp, acidity and basicity) Concept of chirality and stereochemistry 	• Students learn here the principle of basic chemistry. This knowledge is directly useful in determining energy content of various useful substances like fuel or food, therefore might be helpful to the students in procuring jobs in industries related to food, fuel etc. Take home assignments are given.				
2	Organic chemistry- I(Practical)	1	CEMA-P1- P	4	25	B.Sc. Chemistry Hons	CEMA	• Qualitative analysis of organic compounds	• Students learn to detect functional groups in organic sample through mock test and internal assessments.	2016-17	02.07.2016		

3	Organic chemistry- II, Physical Chemistry-II, Inorganic Chemistry-II (theory)	2	CEMA-P2- T	10	75	B.Sc. Chemistry Hons	CEMA	 Origin of spontaneity of chemical and physical processes and concept of entropy Two other thermodynamic properties – A and G, to express spontaneity and equilibrium Reaction rate laws and its dependence on factors like concentration, temperature etc Concepts of reaction mechanism and theories for reaction rate - Collision theory and TST Reaction pathway and progression (theoretical and practical aspect) Type of reactions and mechanism Concept of hybridization and shape of molecules/ions Concept of lattice energy and its application 	• Students learn the fundamentals of reaction kinetics and catalysis. Such knowledge may enable a student to be employed in a production sector that requires catalytic conversion like biotech or pharmaceuticals companies.		20	25.07.2015
4	Inorganic Chemistry -I (Practical)	2	CEMA-P2- P	4	25	B.Sc. Chemistry Hons	CEMA	ualitative analysis of inorganic sin	• Students learn to detect ions in a mixture; this skill helps them to be employed in chemical industries or in detection of heavy metals in soil/water etc. They are skilled to handle hazardous chemical.			

5	Organic chemistry- III, Physical Chemistry-III, Inorganic Chemistry-III (theory)	3	CEMA-P3- T	10	75	B.Sc. Chemistry Hons	CEMA	 Thermodynamic conditions for chemical equilibrium Applications of La Chatelier's Principle, vant' Hoff Isotherm Requirement of quantum mechanics with the limitations of classical physics Operator algebra, Schrodinger equation for simple model system and quantization 	• The students learn the procedure and mechanism of aromatic substitution and how this can be applied towards synthesis of compounds such as paracetamol or aspirin. This would make the students employable in medicinal enterprises.			
6	Inorganic Chemistry-II (Practical)	3	CEMA-P3- P	4	25	3.Sc. Chemistry Hon	CEMA	cept of analysis of inorganic salt m	 Students learn to detect ions in a mixture; this skill helps them to be employed in chemical industries or in detection of heavy metals in soil/water etc. 	2016-17	02.07.2016	

								 Concept of activity and the 			
								effect of ion-ion interactions			
								towards the electrolytic			
								solutions			
								• Nature of migration of ions in			
								electrolytic solution in the			
								presence of an electric field			
								• Electrochemical cell,			
								thermodynamic properties of	Ine course includes		
								cell reaction, Nernst equation	properties and synthesis of		
								• Application of concept of EMF	aromatic nitro compounds		
	Organic chemistry-							to the analysis of	which enables student to work		
	IV, Physical							potentiometric titration	in chemical industries, concept		
_	Chemistry-IV,		CEMA-P4-			B.Sc. Chemistry		Quantum mechanical solution	of retrosynthesis which is		
/	Inorganic	4	т	10	75	Hons	CEMA	of some basic mode of motions -	essential for designing synthesis		
	Chemistry-IV							vibration and rotation	of organic molecules. The		
	(theory)							• Concept of generation of s, p	course includes a unit on		
	. ,,							d orbitals from quantum	electrochemistry, the		
								mechanical solutions	knowledge is necessary for		
								 Use of organometallic 	working on fuel cells or in		
								compounds in organic synthesis	designing corrosion controls.		
								Study of aromatic and			
								nitrogen containing compounds			
								Designing organic synthesis			
								through disconnection approach			
								Concept of oxidation state,			
								hydride, halide - their group			
								trends			
								• Experimental elucidation of			
								conductometric titration to	• Students learn to measure		
								evaluate important physical	pH, such knowledge is essential		
	Physical Chemistry-		CEMA-P4-		25	B.Sc. Chemistry	05144	parameter	in analysing pathological		
8	I(Practical)	4	Р	4	25	Hons	CEMA	• Experimental understanding of	samples like blood, urine or for		
								kinetic behavior of chemical	testing quality of water, soil,		
								reaction.	food, medicine etc.		
				I							

			1					 Understanding of crystal 			
								lattice and the basic principle of			
								X-ray diffraction			
								• Electrical properties like dipole			
								moment and polarizability of			
								the molecules			
								• Explanation of surface and			
								interfacial phenomenon and			
								general idea about colloidal			
								particles and self-associating			
								systems			
								• The effect of solute on			
								thermodynamic properties of a	Ine unit on surface science		
0	Physical Chemistry-		CEMA-P5-	C	50	B.Sc. Chemistry	CENAA	solution	provides a basis to work in		
9	V (theory)	5	Т	6	50	Hons	CEIVIA	 Understanding of phase 	chemical plants designing		
								diagram of matter and the role	storage devices, neterogeneous		
								of thermodynamic parameters	catalysis.		
								on the equilibrium between			
								phases			
								• Description of the relationship			
								between microscopic and bulk			
								properties of matter			
								Concept of partition function			
								and its relationship to different			
								thermodynamic properties			
								Concept of statistical			
								thermodynamics in calculating			
								chemically significant quantities			

10	Organic chemistry- V, (theory)	5	CEMA-P6- T	5	50	B.Sc. Chemistry Hons	CEMA	 Methodologies for synthesis of chiral and heterocyclic molecules Synthesis and use of common drugs Synthesis of amino acids and peptides, including Merrifield synthesis Structure elucidation by modern spectroscopy 	 The students gets acquainted with spectroscopic methods of identifying functional groups/organic compounds, these are the modern tools employed in forensic studies. The unit on heterocyclic chemistry includes synthesis, uses and action of common drugs like Nifedipine, amlodipine, ranitidine, chloroquine. These would help the students working in the medicinal industries. 		
11	Inorganic Chemistry-V (theory)	5	CEMA-P7- T	5	50	B.Sc. Chemistry Hons	СЕМА	 Concept of crystal field stabilization energy and Orgel diagram Concept of Homogeneous and heterogeneous catalysis by organometallic compounds Concept of EAN and 18- electron rule Chemistry of some typical Bio- molecules related to life processes 	• The students get idea about the importance of ligands to contol magnetic and optical properties. Seminars are regularly arranged on the specilized field.		

12	Physical chemistry- II, Organic Chemistry -II (Practical)	5	CEMA-P8- P	10	65	B.Sc. Chemistry Hons	CEMA	 Determination of important physical parameter using potentiometer Experimental elucidation of properties of liquids such as viscosity and surface tension Laboratory synthesis of organic molecules 	• Students learn to measure surface tension, viscosity of liquids which is required in industries preparing food, adhesives, cosmetics, oil and pharmaceuticals petrochemical industries. The department arranged regularly industrial visit for students for better industrial exposure.		
13	Organic chemistry- VI, Physical Chemistry-VI, (Theory)	6	CEMA-P9- T	8	50	B.Sc. Chemistry Hons	CEMA	 Concepts of photochemical and photophysical processes with theoretical models and correlation with experimental methods to investigate photochemical reactions Understanding molecular spectra - including rotational, vibrational and electronic spectra and recognizing relationship between molecular properties and molecular spectra Study of Bio-molecules Advance level separation technique Study of natural products Pericyclic reactions 	• The students get acquainted with advance level separation technique which will be helpful for research carrier.		

14	Analytical Chemistry-I, Inorganic Chemistry-VI (theory)	6	CEMA- P10-T	8	50	B.Sc. Chemistry Hons	CEMA	 Concept of complexometric, permanganometric, argentometric titrations Concept of co-precipitation and post precipitation Concept of Errors in chemical analysis Analysis of water, soil and air sample Concept of magnetic and spectral properties of Lanthanides and Actinides elements Basic idea of nano technology 	 Analytical chemistry part contains principle of basic analytic tools like gravimetric analysis, estimation of ore, cement, alloys, EDTA titration, complexometric, redox, argentometric titrations, analysis of water and air samples, chromatographic techniques and error analysis. Any chemical industry or metallurgical enterprise would require such knowledge. 				
----	---	---	----------------	---	----	-------------------------	------	---	---	--	--	--	--

15	Analytical Chemistry-I, Organic Chemistry- III, Physical Chemistry-III, Inorganic Chemistry-III (Practical)	6	CEMA- P11-P	10	85	B.Sc. Chemistry Hons	CEMA	 Estimation of complex bio molecules such as amino acids and vitamin Experimental analysis of ore and alloy Experimental analysis of synthesized organic molecules by modern spectroscopy Separation of organic molecules from a mixture employing coloumn and thin layer chromatography Application of Spectrophotometry to study reaction kinetics Experimental elucidcation of thermodynamics of liquid mixtures Estimation of individual metal ions and metal ions in mixture spectrophotometrically and titrimetrically 	 Students get hand on experience on estimation of ore, cement, alloys, water samples and chromatographic techniques. 		20	25.07.2015
16	General Chemistry , Physical Chemistry	1	CEMG-P1- T	2	50	B.Sc. Chemistry Hons	CEMA	Concept on quantum numbers, Concept of Stability of nucleus and nuclear energy, Concept of electro negativity, electron	 Students learn here the principle of basic chemistry. Lab quiz and viva are regularly 			
17	Organic Qualitative Analysis	1	CEMG-P1- P	1	25	B.Sc. Chemistry Hons	CEMA	affinity and ionisation energy, Speed of a chemical reaction may be defined, measured and	taken to keep students updated.			
18	Inorganic Chemistry, Organic Chemistry	2	CEMG-P2- T	2	50	B.Sc. Chemistry Hons	CEMA	Concept of hybridization and shape of molecules/ions, Concept of Molecular orbital and bonding, Concept of lattice			20	25.07.2015

19	Quantitative Analysis of inorganic sample(s) Qualitative Analysis of Single Inorganic Compound	2	CEMG-P2- P	1	25	B.Sc. Chemistry Hons	CEMA	energy and its application, Concept of various acid-base theory, Concept of redox and formal potential, feasibility of reaction, Study of reaction intermediates and reaction mechanism, Stereochemistry of organic compounds, Chemistry of carbonyl compounds,	Lab quiz and surprise tests are taken to examine the skill and knowledge students acquired.		
20	Inorganic Chemistry	3	CEMG-P3- T	1	25	B.Sc. Chemistry Hons	CEMA	Concept of oxidation state , hydride, halid of different main	• Students learn here the		
21	Systematic Qualitative analysis of unknown mixture of solid inorganic salts	3	CEMG-P3- P	2	50	B.Sc. Chemistry Hons	CEMA	group elements, Concept of oxo and peroxo compound, Concept of polymeric compounds, Know the various type of reaction of different elements, Separation and identification of various	stability of complex and their availability in nature. Career consultation via arrnaging seminars.		
22	General Chemistry, Organic Chemistry, Physical Chemistry	4	CEMG-P4- T	3	75	B.Sc. Chemistry Hons	CEMA	Comparative study on group-IB and group II-B elements, Reaction study of different functional groups and orgmetallic compounds, Study of aromatic compounds and nitrogen congaing molecules, Chemistry of biomolecules, The second law of thermodynamics, entropy and free, Chemical equilibrium, solubility and solubility product, Colligative properties of a solution, azeotropic and eutectic behaviour, Colloids and their characteristic	Take home assignments are given.		

t n r

22 2 3